Meta bolis mand mitochon driain polycy stick idney disease

 X.Zhang,etal. Cancer Letters 481 (2020) 32–44 (2015) 388–395. [45] W. Lu, Y. Kang, Epithelial-mesenchymal plasticity in cancer progression and me- [33] F. Negoita, J. Blomdahl, S. Wasserstrom, M.E. Winberg, P. Osmark, S. Larsson, tastasis, Dev. Cell 49 (2019) 361–374. K.G.Stenkula,M.Ekstedt,S.Kechagias,C.Holm,H.A.Jones,PNPLA3variantM148 [46] X. Zheng, J.L. Carstens, J. Kim, M. Scheible, J. Kaye, H. Sugimoto, C.C. Wu, causes resistance to starvation-mediated lipid droplet autophagy in human hepa- V.S. LeBleu, R. Kalluri, Epithelial-to-mesenchymal transition is dispensable for tocytes, J. Cell. Biochem. 120 (2019) 343–356. metastasis but induces chemoresistance in pancreatic cancer, Nature 527 (2015) [34] V. Tesori, A.C. Piscaglia, D. Samengo, M. Barba, C. Bernardini, R. Scatena, 525–530. A. Pontoglio, L. Castellini, J.N. Spelbrink, G. Maulucci, M.A. Puglisi, G. Pani, [47] J. Chen, R. Jin, J. Zhao, J. Liu, H. Ying, H. Yan, S. Zhou, Y. Liang, D. Huang, A. Gasbarrini, The multikinase inhibitor Sorafenib enhances and sy- X. Liang, H. Yu, H. Lin, X. Cai, Potential molecular, cellular and microenviron- nergizes with glycolysis blockade for cancer cell killing, Sci. Rep. 5 (2015) 9149. mental mechanism of sorafenib resistance in hepatocellular carcinoma, Canc. Lett. [35] X.S. Chen, L.Y. Li, Y.D. Guan, J.M. Yang, Y. Cheng, Anticancer strategies based on 367 (2015) 1–11. the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect, [48] Y.Xu,H.Xu,M.Li,H.Wu,Y.Guo,J.Chen,J.Shan,X.Chen,J.Shen,Q.Ma,J.Liu, Acta Pharmacol. Sin. 37 (2016) 1013–1019. M. Wang, W. Zhao, J. Hong, Y. Qi, C. Yao, Q. Zhang, Z. Yang, C. Qian, J. Li, [36] J. Li, D. Cheng, M. Zhu, H. Yu, Z. Pan, L. Liu, Q. Geng, H. Pan, M. Yan, M. Yao, KIAA1199 promotes sorafenib tolerance and the metastasis of hepatocellular car- OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the cinoma by activating the EGF/EGFR-dependent epithelial-mesenchymal transition AKT/mTORsignalingpathwayinnon-smallcelllungcancer 3X FLAG Peptide,Theranostics9(2019) program, Canc. Lett. 454 (2019) 78–89. 179–195. [49] A. Forner, M. Reig, J. Bruix, Hepatocellular carcinoma, Lancet 391 (2018) [37] V.Padovano,C.Podrini,Metabolismandmitochondriainpolycystickidneydisease 1301–1314. 

research and therapy, Nat. Rev. Nephrol. 14 (2018) 678–687. [50] R.J. Gillies, I. Robey, R.A. Gatenby, Causes and consequences of increased glucose [38] M. Alvarez-Tejado, S. Naranjo-Suarez, C. Jimenez, A.C. Carrera, M.O. Landazuri, metabolism of cancers, J. Nucl. Med. 49 (Suppl 2) (2008) 24s–42s. L.delPeso,Hypoxiainducestheactivationofthephosphatidylinositol3-kinase/Akt [51] G. Pani, T. Galeotti, P. Chiarugi, Metastasis: cancer cell\'s escape from oxidative cell survivalpathwayinPC12 cells:protectiveroleinapoptosis Veratridine,J.Biol.###http://www.glpbio.com/simage/GA11366-H-D-Leu-Thr-Arg-pNA-acetate-salt-2.png####Chem.276 stress, Canc. Metastasis Rev. 29 (2010) 351–378. (2001) 22368–22374. [52] S. Kamarajugadda, L. Stemboroski, Q. Cai, N.E. Simpson, S. Nayak, M. Tan, J. Lu, [39] E.Y. Chen, N.M. Mazure, J.A. Cooper, A.J. Giaccia, Hypoxia activates a platelet- Glucose oxidation modulates anoikis and tumor metastasis, Mol. Cell Biol. 32 derived growth factor receptor/phosphatidylinositol 3-kinase/Akt pathway that (2012) 1893–1907. 

resultsinglycogensynthasekinase-3inactivation,Canc.Res.61(2001)2429–2433. [53] M.A.Huber,N.Kraut Cell Counting Kit-8 chemicals,H.Beug,Molecularrequirementsforepithelial-mesenchymal [40] I.Vivanco,C.L.Sawyers,Thephosphatidylinositol3-KinaseAKTpathwayinhuman transition during tumor progression, Curr. Opin. Cell Biol. 17 (2005) 548–558. cancer, Nat. Rev. Canc. 2 (2002) 489–501. [54] M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg [41] H. Zhang, H. Lu, L. Xiang, J.W. Bullen, C. Zhang, D. Samanta, D.M. Gilkes, J. He, effect: the metabolic requirements of cell proliferation, Science 324 (2009) G.L. Semenza, HIF-1 regulates CD47 expression in breast cancer to promote 1029–1033. evasionofphagocytosisandmaintenanceofcancerstemcells,Proc.Natl.Acad.Sci. [55] B. Bhattacharya, M.F. Mohd Omar, R. Soong, The Warburg effect and drug re- U. S. A. 112 (2015) E6215–E6223. sistance, Br. J. Pharmacol. 173 (2016) 970–979. [42] A.C. Martinez-Torres, C. Quiney, T. Attout, H. Boullet, L. Herbi, L. Vela, S. Barbier, [56] M.Tomizawa,F. Shinozaki,Y.Motoyoshi,T.Sugiyama,S.Yamamoto,N. Ishige,2- D. Chateau, E. Chapiro, F. Nguyen-Khac, F. Davi, M. Le Garff-Tavernier, Deoxyglucose and sorafenib synergistically suppress the proliferation and motility R. Moumne, M. Sarfati, P. Karoyan, H. Merle-Beral, P. Launay, S.A. Susin, CD47 of hepatocellular carcinoma cells, Oncol Lett 13 (2017) 800–804. agonist peptides induce programmed cell death in refractory chronic lymphocytic [57] R. Reyes, N.A. Wani, K. Ghoshal, S.T. Jacob, T. Motiwala, Sorafenib and 2-deox- leukemiaBcellsviaPLCgamma1activation:evidencefrommiceandhumans,PLoS yglucose synergistically inhibit proliferation of both sorafenib-sensitive and -re- Med. 12 (2015) e1001796. sistant HCC cells by inhibiting ATP production, Gene Expr. 17 (2017) 129–140. [43] F.Han,C.F.Li,Z.Cai,X.Zhang,ThecriticalroleofAMPKindrivingAktactivation [58] S. Li, W. Dai, W. Mo, J. Li, J. Feng, L. Wu, T. Liu, Q. Yu, S. Xu, W. Wang, X. Lu, under stress, tumorigenesis and drug resistance, Nat. Commun. 9 (2018) 4728. Q. Zhang, K. Chen, Y. Xia, J. Lu, Y. Zhou, X. Fan, L. Xu, C. Guo, By inhibiting [44] S.M. Jeon, N.S. Chandel, N. Hay, AMPK regulates NADPH homeostasis to promote PFKFB3,aspirinovercomessorafenibresistanceinhepatocellularcarcinoma,Int.J. tumour cell survival during energy stress, Nature 485 (2012) 661–665. Canc. 141 (2017) 2571–2584.

Comments

Popular posts from this blog

32–44 significance and clinical application prospects

Contents lists available at ScienceDirect Cancer Letters journal homepage

in non-small cell lung cancer confers significant stage-independent survival dis- Expression of novel molecules