Meta bolis mand mitochon driain polycy stick idney disease

 X.Zhang,etal. Cancer Letters 481 (2020) 32–44 (2015) 388–395. [45] W. Lu, Y. Kang, Epithelial-mesenchymal plasticity in cancer progression and me- [33] F. Negoita, J. Blomdahl, S. Wasserstrom, M.E. Winberg, P. Osmark, S. Larsson, tastasis, Dev. Cell 49 (2019) 361–374. K.G.Stenkula,M.Ekstedt,S.Kechagias,C.Holm,H.A.Jones,PNPLA3variantM148 [46] X. Zheng, J.L. Carstens, J. Kim, M. Scheible, J. Kaye, H. Sugimoto, C.C. Wu, causes resistance to starvation-mediated lipid droplet autophagy in human hepa- V.S. LeBleu, R. Kalluri, Epithelial-to-mesenchymal transition is dispensable for tocytes, J. Cell. Biochem. 120 (2019) 343–356. metastasis but induces chemoresistance in pancreatic cancer, Nature 527 (2015) [34] V. Tesori, A.C. Piscaglia, D. Samengo, M. Barba, C. Bernardini, R. Scatena, 525–530. A. Pontoglio, L. Castellini, J.N. Spelbrink, G. Maulucci, M.A. Puglisi, G. Pani, [47] J. Chen, R. Jin, J. Zhao, J. Liu, H. Ying, H. Yan, S. Zhou, Y. Liang, D. Huang, A. Gasbarrini, The multikinase inhibitor Sorafenib enhances and sy- X. Liang, H. Yu, H. Lin, X. Cai, Potential molecular, cellular and microenviron- nergizes with glycolysis blockade for cancer cell killing, Sci. Rep. 5 (2015) 9149. mental mechanism of sorafenib resistance in hepatocellular carcinoma, Canc. Lett. [35] X.S. Chen, L.Y. Li, Y.D. Guan, J.M. Yang, Y. Cheng, Anticancer strategies based on 367 (2015) 1–11. the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect, [48] Y.Xu,H.Xu,M.Li,H.Wu,Y.Guo,J.Chen,J.Shan,X.Chen,J.Shen,Q.Ma,J.Liu, Acta Pharmacol. Sin. 37 (2016) 1013–1019. M. Wang, W. Zhao, J. Hong, Y. Qi, C. Yao, Q. Zhang, Z. Yang, C. Qian, J. Li, [36] J. Li, D. Cheng, M. Zhu, H. Yu, Z. Pan, L. Liu, Q. Geng, H. Pan, M. Yan, M. Yao, KIAA1199 promotes sorafenib tolerance and the metastasis of hepatocellular car- OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the cinoma by activating the EGF/EGFR-dependent epithelial-mesenchymal transition AKT/mTORsignalingpathwayinnon-smallcelllungcancer 3X FLAG Peptide,Theranostics9(2019) program, Canc. Lett. 454 (2019) 78–89. 179–195. [49] A. Forner, M. Reig, J. Bruix, Hepatocellular carcinoma, Lancet 391 (2018) [37] V.Padovano,C.Podrini,Metabolismandmitochondriainpolycystickidneydisease 1301–1314. 

research and therapy, Nat. Rev. Nephrol. 14 (2018) 678–687. [50] R.J. Gillies, I. Robey, R.A. Gatenby, Causes and consequences of increased glucose [38] M. Alvarez-Tejado, S. Naranjo-Suarez, C. Jimenez, A.C. Carrera, M.O. Landazuri, metabolism of cancers, J. Nucl. Med. 49 (Suppl 2) (2008) 24s–42s. L.delPeso,Hypoxiainducestheactivationofthephosphatidylinositol3-kinase/Akt [51] G. Pani, T. Galeotti, P. Chiarugi, Metastasis: cancer cell\'s escape from oxidative cell survivalpathwayinPC12 cells:protectiveroleinapoptosis Veratridine,J.Biol.###http://www.glpbio.com/simage/GA11366-H-D-Leu-Thr-Arg-pNA-acetate-salt-2.png####Chem.276 stress, Canc. Metastasis Rev. 29 (2010) 351–378. (2001) 22368–22374. [52] S. Kamarajugadda, L. Stemboroski, Q. Cai, N.E. Simpson, S. Nayak, M. Tan, J. Lu, [39] E.Y. Chen, N.M. Mazure, J.A. Cooper, A.J. Giaccia, Hypoxia activates a platelet- Glucose oxidation modulates anoikis and tumor metastasis, Mol. Cell Biol. 32 derived growth factor receptor/phosphatidylinositol 3-kinase/Akt pathway that (2012) 1893–1907. 

resultsinglycogensynthasekinase-3inactivation,Canc.Res.61(2001)2429–2433. [53] M.A.Huber,N.Kraut Cell Counting Kit-8 chemicals,H.Beug,Molecularrequirementsforepithelial-mesenchymal [40] I.Vivanco,C.L.Sawyers,Thephosphatidylinositol3-KinaseAKTpathwayinhuman transition during tumor progression, Curr. Opin. Cell Biol. 17 (2005) 548–558. cancer, Nat. Rev. Canc. 2 (2002) 489–501. [54] M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg [41] H. Zhang, H. Lu, L. Xiang, J.W. Bullen, C. Zhang, D. Samanta, D.M. Gilkes, J. He, effect: the metabolic requirements of cell proliferation, Science 324 (2009) G.L. Semenza, HIF-1 regulates CD47 expression in breast cancer to promote 1029–1033. evasionofphagocytosisandmaintenanceofcancerstemcells,Proc.Natl.Acad.Sci. [55] B. Bhattacharya, M.F. Mohd Omar, R. Soong, The Warburg effect and drug re- U. S. A. 112 (2015) E6215–E6223. sistance, Br. J. Pharmacol. 173 (2016) 970–979. [42] A.C. Martinez-Torres, C. Quiney, T. Attout, H. Boullet, L. Herbi, L. Vela, S. Barbier, [56] M.Tomizawa,F. Shinozaki,Y.Motoyoshi,T.Sugiyama,S.Yamamoto,N. Ishige,2- D. Chateau, E. Chapiro, F. Nguyen-Khac, F. Davi, M. Le Garff-Tavernier, Deoxyglucose and sorafenib synergistically suppress the proliferation and motility R. Moumne, M. Sarfati, P. Karoyan, H. Merle-Beral, P. Launay, S.A. Susin, CD47 of hepatocellular carcinoma cells, Oncol Lett 13 (2017) 800–804. agonist peptides induce programmed cell death in refractory chronic lymphocytic [57] R. Reyes, N.A. Wani, K. Ghoshal, S.T. Jacob, T. Motiwala, Sorafenib and 2-deox- leukemiaBcellsviaPLCgamma1activation:evidencefrommiceandhumans,PLoS yglucose synergistically inhibit proliferation of both sorafenib-sensitive and -re- Med. 12 (2015) e1001796. sistant HCC cells by inhibiting ATP production, Gene Expr. 17 (2017) 129–140. [43] F.Han,C.F.Li,Z.Cai,X.Zhang,ThecriticalroleofAMPKindrivingAktactivation [58] S. Li, W. Dai, W. Mo, J. Li, J. Feng, L. Wu, T. Liu, Q. Yu, S. Xu, W. Wang, X. Lu, under stress, tumorigenesis and drug resistance, Nat. Commun. 9 (2018) 4728. Q. Zhang, K. Chen, Y. Xia, J. Lu, Y. Zhou, X. Fan, L. Xu, C. Guo, By inhibiting [44] S.M. Jeon, N.S. Chandel, N. Hay, AMPK regulates NADPH homeostasis to promote PFKFB3,aspirinovercomessorafenibresistanceinhepatocellularcarcinoma,Int.J. tumour cell survival during energy stress, Nature 485 (2012) 661–665. Canc. 141 (2017) 2571–2584.

Comments

Popular posts from this blog

32–44 significance and clinical application prospects

in non-small cell lung cancer confers significant stage-independent survival dis- Expression of novel molecules

This leads to the plot in Fig